CHROM. 20 481

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP OF COUMA-RIN DERIVATIVES

INVOLVEMENT OF PARTITION BETWEEN AQUEOUS AND MEMBRANE PHASE

REINER DÜREN and HORST A. DIEHL*

Biophysics Group, Fachbereich 1 (Physik, Elektrotechnik), Universität Bremen, D-2800 Bremen 33 (F.R.G.) (First received November 25th, 1987; revised manuscript received March 3rd, 1988)

SUMMARY

In order to understand the substrate behaviour of several 7-alkoxycoumarins and 7-alkoxy-4-alkylcoumarins towards the liver microsomal monooxygenase system, their lipophilic properties have been examined. As a model for the lipophilicity the reversed-phase liquid chromatographic retention parameter log k_w has been used. In a system with methanol-water as the mobile phase and RP-18 (octadecylsilica) as the stationary phase, we found a quadratic relationship between the volume fraction of the organic solvent and the logarithm of the capacity factor (log k'). The extrapolation to a pure aqueous phase reveals a linear relationship of the theoretical capacity factor log k_w with the chain length. This holds for 1-12 carbon atoms in the alkoxy chain and for zero to three carbon atoms in the alkyl chain. Moreover, the incremental effect of the methylene residues on the lipophilicity of the compounds ($\Delta \log k_w/\Delta CH_2$) is found to be 0.60 + 0.01.

If the coumarin derivatives are used as substates for the liver microsomal monooxygenase system, no systematic dependence of the enzymic data (Michaelis-Menten constant K_m) on the lipophilic data (log k_w) can be demonstrated.

The metabolism of these compounds by the microsomal monooxygenase system seems not to be limited by the partition between the membrane and the aqueous phase. Whether other factors, *e.g.* the lateral diffusion of the substrates *versus* the membrane-bound enzyme system or enzyme active-site characteristics, govern the metabolism remains to be investigated.

INTRODUCTION

In the case of membrane-bound enzymic reactions, enzyme mechanistic data, such as the Michaelis–Menten constant K_m and the spectral dissociation constant K_s , are related to the partition coefficient of a substrate between the membrane and the aqueous phase, as has been pointed out by Hansch *et al.*¹. This should hold for the liver microsomal monooxygenase system, which is deeply integrated into the membrane of the endoplasmic reticulum.

To characterize the lipophilicity of a compound, the partition coefficient P is often used. This is usually obtained from an *n*-octanol-water partitioning system according to eqn. 1:

$$P = \frac{C_{\text{oct.}}}{C_{\text{water}}} \quad i.e. \quad \log P = \log C_{\text{oct.}} - \log C_{\text{water}} \tag{1}$$

where $C_{oct.}$ and C_{water} are the concentrations of the compound in the octanol phase and the water phase, respectively. Instead of *n*-octanol, other hydrocarbons such as cyclohexane, *n*-hexane or oils may be used². Because of the limited applicability (log $P \leq 4$) and experimental difficulties of determining P, especially when a compound is not soluble in one of the solvent phases, other methods have been developed.

Boyce and Milborrow³ used thin-layer chromatography (TLC) (paraffin-coated silica gel plates). They referred to the terms R_m and R_F , which had been introduced by Bate-Smith and Westall⁴ and by Martin⁵, respectively. These terms are related to the partition coefficient P;

$$P = k \left(\frac{1}{R_F} - 1\right) \tag{2}$$

$$R_{\rm m} = \log\left(\frac{1}{R_F} - 1\right) \tag{3}$$

where k is the empirical constant for the system and R_F is the relative migration rate, which is given by the distance moved by solute divided by the distance moved by solvent front.

The R_m values depend on the composition of the mobile phase, and this must be taken into consideration when different data are compared. Furthermore, the proportion of acetone to water (0.7, v/v) chosen by Boyce and Milborrow³ seems to be somewhat arbitrary. In contrast to this, Braumann and Grimme⁶ have introduced the model parameter log k_w :

$$\log k_{\rm w} = \log k' - S\varphi_{\rm B} \tag{4}$$

where k', a capacity factor, is given by

$$k' = (t_R - t_0)/t_0 \tag{5}$$

where t_R is the chromatographic retention time of the substance and t_0 is the "dead time" of the chromatographic system. φ_B represents the volume fraction of the mobile phase and S is a parameter that depends on the nature of the organic part of the mobile phase and on the substrate used⁷.

While the choice of octadecylsilica as the stationary phase and the extrapolation to the pure aqueous phase may reflect the partition behaviour in a biological system, the choice of an organic part for the mobile phase remains somewhat arbitrary and may be made to suit experimental convenience. Measurements made by Braumann *et* $al.^8$ show that the correspondence of log k_w values, obtained from methanol-water systems, with the log *P* values is better than those obtained from acetonitrile-water or tetrahydrofuran-water systems.

We decided to apply this method to a high-performance liquid chromatographic (HPLC) system because many elutions may be performed on one column, whereas TLC is limited by the dimensions of the plates and interplate variations are a source of considerable error³.

We are investigating coumarin derivatives as substrates of the liver microsomal monooxygenase system⁹. They represent a set of compounds that is well suited to discriminate the different molecular properties that govern the metabolism of the substrates by the microsomal monooxygenase system.

The properties to be considered are the partition of the substrate between the aqueous phase and the membrane, the mobility of the substrate (and the enzymes) in the membrane, the binding characteristics of the substrate to the active site of the enzyme and different reaction properties determined by the enzyme.

Here only the initial point will be considered and treated under its more common aspects.

MATERIALS AND METHODS

Table I lists the substances that we investigated. Most of the substances were synthesized in our laboratory by the method described by Will and Beck¹⁰ or, in the case of the 7-hydroxy derivatives, according to Pechmann and Duisberg¹¹. Pure coumarin was purchased from Merck (Darmstadt, F.R.G.). The column (125 mm × 4.6 mm I.D.) (Merck) was slurry-packed with LiChrosorb RP-18, 10 μ m (Merck).

TABLE I

LIST OF 7-HYDROXY-(4-ALKYL)COUMARINS AND 7-ALKOXY-(4-ALKYL)COUMARINS IN-VESTIGATED

Abbreviation	Name	Source	
7HOC	7-Hydroxycoumarin	E. Merck, Darmstadt, F.R.G.	
7HO4MC	7-Hydroxy-4-methylcoumarin	Aldrich, Steinheim, F.R.G.	
7HO4EC	4-Ethyl-7-hydroxycoumarin	Our laboratory	
7HO4PC	7-Hydroxy-4-propylcoumarin	Our laboratory	
7MOC	7-Methoxycoumarin	Aldrich, Steinheim, F.R.G.	
7EOC	7-Ethoxycoumarin	Sigma, Deisenhofen, F.R.G.	
7POC	7-Propoxycoumarin	Our laboratory	
7BOC	7-Butoxycoumarin	Our laboratory	
7HexOC	7-Hexyloxycoumarin	Our laboratory	
70cOC	7-Octyloxycoumarin	Our laboratory	
7DecOC	7-Decyloxycoumarin	Our laboratory	
7-DodeOC	7-Dodecyloxycoumarin	Our laboratory	
7MO4MC	7-Methoxy-4-methylcoumarin	Roth, Karlsruhe, F.R.G.	
7EO4MC	7-Ethoxy-4-methylcoumarin	Our laboratory	
7HexO4MC	7-Hexyloxy-4-methylcoumarin	Our laboratory	
7EO4EC	7-Ethoxy-4-ethylcoumarin	Our laboratory	
7EO4PC	7-Ethoxy-4-propylcoumarin	Our laboratory	

Carbon tetrachloride was used as the suspending medium. To introduce the suspension into the column we used a Haskel pump at 360 bar.

The chromatographic system consisted of an Altex pump (Model 100-A) and a UV detector (Laboratory Data Control Model 1203 UV III) with the detection wavelength fixed at 254 nm.

The mobile phase was methanol p.a.-water (twice distilled over a quartz column) in different volume fractions. Aliquots of $5-10 \,\mu$ l of the $10^{-5}-10^{-2} M$ sample solutions (solvent methanol) were injected using a $10-\mu$ l precision syringe with the aid of a Rheodyne Model 7105 sample valve (Rheodyne, Berkeley, CA, U.S.A.). The retention times were measured with a stopwatch. There was no significant relation between the retention time and the substrate concentration or the sample volume.

When substances with long retention times (0.5-2 h) were eluted, derivatives with shorter retention times could be investigated simultaneously, and no comigration or other influences were observed. This allowed more measurements in the same time, even when some substances were "overtaking" each other.

Fig. 1. Chromatographically determined partition of coumarin derivatives in a methanol-water system as the mobile phase. The capacity factor k' as defined by eqn. 5 is plotted against the mobile phase volume fraction of methanol φ_{MeOH} (for symbols see inset).

The "dead time" (t_0) of the system was determined with potassium nitrate dissolved in methanol. For each substance at least three measurements were carried out for each composition of the mobile phase. The "dead times" were determined at least three times for all mobile phase compositions by three measurements each.

To evaluate the log k_w values we developed a PASCAL-program on a microcomputer (Apple IIe). A precondition for the regression was a subroutine with an accuracy of 35 numerals.

The details of the enzymic investigations will be described elsewhere⁹.

RESULTS AND DISCUSSION

The graphic representation of the relationship between the log k' values and the volume fraction (φ_B) of the mobile phase, as shown in Figs. 1 and 2a and b, indicates a quadratic behaviour, which can be described by the following function:

$$\log k' = \log k_{\rm w} + S\varphi_{\rm MeOH} + S'\varphi_{\rm MeOH}^2 \tag{6}$$

This is in good agreement with measurements of Schoenmakers *et al.*¹² for some substituted benzenes. Table II summarizes the data obtained by us.

The extrapolated log k_w values show a linear relationship with the 7-alkoxy chain

Fig. 2. Chromatographically determined partition of (a) 7-hydroxy-4-alkylcoumarins and (b) 7-ethoxy-4-alkylcoumarins, in a methanol-water system as the mobile phase. The capacity factor k' as defined by eqn. 5 is plotted against the mobile volume fraction of methanol φ_{MeOH} (for symbols see insets).

TABLE II

LIPOPHILIC-HYDROPHILIC PARTITION OF COUMARIN AND ITS DERIVATIVES

Substance	n	log k _w	S	S	r^2
Coumarin	17	2.37 ± 0.03	-5.23 ± 0.13	2.33 ± 0.13	1.000
7MOC	16	2.84 ± 0.03	-5.95 ± 0.13	2.65 ± 0.12	1.000
7EOC	15	3.34 ± 0.07	-6.24 + 0.26	2.41 ± 0.23	0.999
7POC	15	4.05 ± 0.07	-7.12 + 0.28	2.65 + 0.23	0.999
7BOC	15	4.50 ± 0.08	-7.03 ± 0.28	2.11 ± 0.23	1.000
7HexOC	14	6.16 ± 0.36	-9.51 ± 1.03	3.11 ± 0.72	0.997
7OcOC	14	6.82 ± 0.46	-9.32 + 1.23	2.43 + 0.81	0.998
7DecOC	10	8.48 ± 0.77	-11.58 ± 1.84	3.20 ± 1.10	0.999
7DodeOC	10	10.21 ± 0.91	-13.79 ± 2.17	3.81 ± 1.29	0.999
7HOC	17	2.15 ± 0.04	-5.41 ± 0.20	2.62 ± 0.19	0,999
7HO4MC	16	2.76 ± 0.08	-6.71 ± 0.32	3.51 ± 0.32	0.995
7HO4EC	17	3.24 ± 0.04	-6.79 ± 0.19	2.92 ± 0.19	0.999
7HO4PC	15	3.75 ± 0.08	-7.36 ± 0.29	3.12 ± 0.24	0.999
7EO4MC	15	3.91 ± 0.09	-7.19 ± 0.35	2.89 + 0.31	0.998
7EO4EC	17	4.70 ± 0.14	-8.54 ± 0.44	3.52 + 0.36	0.998
7EO4PC	13	5.19 ± 0.08	-8.74 + 0.25	3.23 + 0.18	1.000
7HexO4MC	13	6.83 + 0.41	-10.52 ± 1.18	3.55 ± 0.83	0.998

log k_w , S, and S' data (\pm standard error) fitting eqn. 6 with the correlation coefficient r^2 ; n = number of various compositions of the mobile phase.

length for 1-12 carbon atoms (Fig. 3) and with the 4-alkyl chain length for zero to three carbon atoms (Fig. 4).

Fig. 3. Differential lipophilicities of the 7-alkoxycoumarins and 7-alkoxy-4-methylcoumarins. The lipophilicity parameter log k_w , as defined by eqn. 6, is plotted against the CH₂ increments for the 7-alkoxycoumarins (\blacksquare , measured data; —, linear regression line, $r^2 = 0.994$) and for the 7-alkoxy-4-methylcoumarins (\blacksquare , measured data; ---, linear regression line, $r^2 = 0.992$).

Fig. 4. Differential lipophilicities for the 7-hydroxy- and 7-ethoxy-4-alkylcoumarins. The lipophilicity parameter log k_{w} , as defined by eqn. 6 is plotted against the CH₂ increments for the 7-hydroxy-4-alkylcoumarins (\blacktriangle , measured data; ---, linear regression line, $r^2 = 0.996$) and for the 7-ethoxy-4-alkylcoumarins (\blacklozenge , measured data; ---, linear regression line, $r^2 = 0.996$).

$ \bar{\mathbf{t}}_{w} = \frac{\omega \cdot \mathbf{w}}{n}, \mathbf{w} $	here $n =$ number of d	lifferent basic system	is $(i = 7HOC, 7EO)$	C, 7HexOC).			
Substituent	t _w (coumarin)	t" (7HOC)	t., (7EOC)	t" (7HexOC)	ع ديا	t _w (benzene) (ref. 12)	tw (benzene) (ref. 8)
7-H0- 7-CH30- 7-C,H50- 7-C,H50- 7-C,H10- 7-C,H130- 7-C,H130- 7-C,0H210- 7-C12H210- 7-C12H210-	$\begin{array}{c} -0.22 \pm 0.05 \\ +0.48 \pm 0.04 \\ +0.98 \pm 0.07 \\ +1.68 \pm 0.08 \\ +2.13 \pm 0.08 \\ +3.79 \pm 0.08 \\ +4.45 \pm 0.36 \\ +4.45 \pm 0.46 \\ +6.12 \pm 0.77 \\ +7.85 \pm 0.91 \end{array}$					- 0.92	-0.82 -0.01
4-CH ₃ - 4-C ₂ H ₅ - 4-C ₃ H ₇ -		$\begin{array}{c} +0.61 \pm 0.09 \\ +1.09 \pm 0.06 \\ +1.60 \pm 0.09 \end{array}$	$+0.57 \pm 0.11$ +1.35 ± 0.15 +1.85 ± 0.11	$+0.67 \pm 0.55$	$+0.60 \pm 0.02$ $+1.13 \pm 0.09$ $+1.70 \pm 0.12$	+ 0.79 + 1.23	+ 0.56 + 1.02 + 1.66

SUBSTITUENT CONSTANT $t_w(\pm$ STANDARD ERROR) AS DEFINED BY EQN. 7 FROM DIFFERENT COUMARIN AND BENZENE DERIVATIVES $\sum \tau_w(t)$ TABLE III

QSAR OF COUMARIN DERIVATIVES

To compare the effect of different functional groups, a substituent constant $\tau_{\rm w}$ has been defined as

$$\tau_{\mathbf{w}} = \log k_{\mathbf{w}} \left(\mathbf{X}_{\mathbf{i}} \right) - \log k_{\mathbf{w}} \left(\mathbf{H}_{\mathbf{i}} \right) \tag{7}$$

where X is a substituent that replaces a hydrogen atom of the parent compound (i).

In Table III the substituent constants are collected. The averaged τ_w values for the alkyl groups of coumarins are in good agreement with those of benzene, but the values for the hydroxy and alkoxy groups in the coumarin system show significant deviations from the analogous values in the benzene system.

The reason for that may be a principal limitation of the validity range of eqn. 7 for hydroxy and short-chain alkoxy groups, as well as for other substituents that tend to form hydrogen bonds. If such a hydrogen bond-forming substituent is connected to a highly lipophilic molecule, *e.g.* benzene, the hydrophilic contribution may be higher (*i.e.* the τ_w value may be more negative) than in the case where that particular substituent is connected to a molecule that already forms hydrogen bonds, *e.g.* coumarin.

Furthermore, our set of log k_w values allows one to calculate the differential effect of the methylene group (CH₂) of alkoxy and alkyl chains from the slope of the regression lines, as shown in Figs. 3 and 4, in a wide range of involved methylene groups. The numerical results are given in Table IV.

It is obvious that our $\Delta \log k_w / \Delta CH_2$ values are independent (within the error limits) of the chain type and the basis system. This much cannot be said for the values

TABLE IV

DIFFERENTIAL EFFECT OF CH $_2$ INCREMENTS ON THE LIPOPHILICITY OF DIFFERENT HOMOLOGOUS SERIES OF COUMARINS AND BENZENES

Determined from different methods (the underlined residue indicates the substituent of interest). $\log k_w$ has been determined according to eqns. 6 and 4, respectively. (1) $\log k_w$ data from Table II (n = 9, see also Fig. 4). (2) $\log k_w$ data from Table II (n = 3, see also Fig. 4). (3) $\log k_w$ data from Table II (n = 4, see also Fig. 5). (4) $\log k_w$ data from Table II (n = 4, see also Fig. 5). (5) $\log k_w$ data from ref. 8: phenol (CH₂ = 0), 1.34; anisole (CH₂ = 1), 2.15. (6) $\log k_w$ data from ref. 8: benzene (CH₂ = 0), 2.16; toluene, 2.72; ethylbenzene, 3.18; *n*-propylbenzene, 3.82; *n*-butylbenzene, 4.32. (7) $\log k_w$ data from ref. 12: benzene (CH₂ = 0), 2.31; toluene, 3.09; ethylbenzene, 3.53.

Homologues	∆log k _w	r ²
	ΔCH_2	
7-Alkoxycoumarins	(1) 0.598 ± 0.04	0.994
7-Alkoxy-4-methylcoumarin	(2) 0.619 ± 0.06	0.992
7-Hydroxy-4-alkylcoumarins	(3) 0.591 ± 0.05	0.999
7-Ethoxy-4-alkylcoumarins	(4) 0.631 ± 0.21	0.993
Average value	$0.60~\pm~0.01$	
Alkoxybenzenes	(5) 0.81	
Alkylbenzenes	(6) 0.542 ± 0.014	0.998
	(7) 0.610 ± 0.098	0.975

QSAR OF COUMARIN DERIVATIVES

reported by other laboratories and that seems to be a general problem in this field. For all that, the incremental effects of CH_2 on the lipophilicity of the coumarins and the benzenes are of the same order even though they are obtained by different methods and from different molecules. Therefore, the log k_w model is well suited to quantify the hydrophobicity of coumarin derivatives. It is our method of choice because of its broad and convenient applicablity. The linear relationship of the log k_w values with respect to the alkoxy and alkyl chain lengths means that values for derivatives that have not been determined can be interpolated or extrapolated.

As mentioned above, our main interest is to compare the lipophilic data of the coumarin derivatives with their substrate properties towards the microsomal monooxygenase system. For this reason we have investigated the enzymic parameters for the type of reaction shown in eqn. 8:

where MOS is the monooxygenase system from pig liver microsomes.

The relationship between the Michaelis–Menten constant (K_m) (the details of the enzymic investigations will be published elsewhere⁹) and the lipophilic parameter (log k_w) for a collection of coumarin derivatives is shown in Fig. 5.

It is clear that there is no regular variation in the enzymatic parameter log K_m with the lipophilic parameter log k_w , and from a knowledge of the lipophilicity alone no prediction of the substrate properties is possible.

CONCLUSIONS

Under the assumption that the "log k_w model" reflects the solubility properties of a biological membrane, we can conclude that the partition of coumarin derivatives

Fig. 5. 7-O-Dealkylation activity of 7-alkoxycoumarins versus their lipophilic parameter $\log k_w$ (eqn. 6). K_m is the Michaelis-Menten constant, and the number of filled quarters represents the number of carbon atoms of the alkoxy chain; the circles and squares correspond to different microsomal preparations.

between the membrane and the aqueous phase is linearly related to the length of the alkoxy or alkyl chain. But the affinity of these molecules for the metabolizing enzyme cytochrome P-450, expressed by the K_m values, does not vary in a consistent manner.

So, the partition of the coumarin derivatives between the aqueous phase and the biological membrane is not a primary factor governing the kinetics of these compounds. Other parameters, such as the mobility of the substrates in the membrane and enzyme active-site limitations, must be considered.

ACKNOWLEDGEMENT

We thank Prof. Dr. B. Jastorff (Chemistry Department, University of Bremen) for permission to work with the chromatographic equipment in his laboratory.

REFERENCES

- 1 C. Hansch, E. W. Deutsch and R. N. Smith, J. Am. Chem. Soc., 87 (1965) 2738.
- 2 A. Leo, C. Hansch and D. Elkins, Chem. Rev., 71 (1971) 525.
- 3 C. B. C. Boyce and B. V. Milborrow, Nature (London), (1965) 537.
- 4 E. C. Bate-Smith and R. G. Westall, Biochim. Biophys. Acta, 4 (1950) 427.
- 5 A. J. P. Martin, Biochem. Soc. Symp., 3 (1950) 4.
- 6 Th. Braumann and L. H. Grimme, J. Chromatogr., 206 (1981) 7.
- 7 L. R. Snyder, J. W. Dolan and J. R. Gant, J. Chromatogr., 165 (1979) 3.
- 8 Th. Braumann, G. Weber and L. H. Grimme, J. Chromatogr., 261 (1983) 329.
- 9 R. Düren and H. Dichl, in preparation.
- 10 W. Will and P. Beck, Chem. Ber., 19 (1886) 1777.
- 11 H. v. Pechmann and C. Duisburg, Chem. Ber., 16 (1883) 2119.
- 12 P. J. Schoenmakers, H. A. M. Billiet, R. Tijssen and L. De Galan, J. Chromatogr., 149 (1978) 519.